1. 1 + 3 + 3² + + 3^{*n*-1} =
$$\frac{(3^{n}-1)}{2}$$

Solution : Let $s_{(n)}$ be the given statement ;

$$s_{(n)} = 1 + 3 + 3^2 + \dots + 3^{n-1} = \frac{(3^n - 1)}{2}$$

Since $s_{(1)} = 1 = \frac{(3^1 - 1)}{2} = 1$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{\left(n\right)}$ is true for n = k , then

$$s_{(k)} = 1 + 3 + 3^2 + \dots + 3^{k-1} = \frac{(3^k - 1)}{2}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$s_{(k+1)} = \frac{(3^{(k+1)}-1)}{2}$$

We observe that,

$$S_{(k+1)} = 1 + 3 + 3^{2} + \dots + 3^{k-1} + 3^{(k+1)-1}$$

$$= S_{(k)} + 3^{k}$$

$$= \frac{(3^{k}-1)}{2} + 3^{k}$$

$$= \frac{3^{k}-1+6k}{2}$$

$$= \frac{9^{k}-1}{2}$$

$$= \frac{3.3^{k}-1}{2}$$

$$\therefore S_{(k+1)} = \frac{(3^{(k+1)}-1)}{2}$$

: The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$1 + 3 + 3^2 + \dots + 3^{n-1} = \frac{(3^n - 1)}{2}$$
, is true for all $n \in N$.

2.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

$$s_{(n)} = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Since $s_{(1)} = 1 = \frac{1(1+1)^2}{4} = 1$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$s_{(k)} = 1^3 + 2^3 + 3^3 + \dots + k^3 = \left[\frac{k(k+1)}{2}\right]^2$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$S_{(k+1)} = \frac{(k+1)^2[(k+1)+1]^2}{4}$$

We observe that,

$$s_{(k+1)} = 1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= s_{(k)} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}[k^{2} + 4(k+1)]}{4}$$

$$= \frac{(k+1)^{2}[k^{2} + 4k + 4]}{4}$$

$$= \frac{(k+1)^{2}[k^{2} + 4k + 4]}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$\therefore \quad s_{(k+1)} = \frac{(k+1)^{2}[(k+1)+1]^{2}}{4}$$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

 $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$, is true for all $n \in \mathbb{N}$.

3.
$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots n} = \frac{2n}{n+1}$$

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots n} = \frac{2n}{n+1}$$

$$s_{(n)} = 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{2}{n(n+1)} = \frac{2n}{n+1}$$
Since $s_{(1)} = 1 = \frac{2}{1(1+1)} = 1$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$S_{(k)} = 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{2}{k(k+1)} = \frac{2k}{k+1}$$

We show that the statement $s_{(n)}$ is true for ${\sf n=k+1}$

We show that,
$$s_{(k+1)} = \frac{2(k+1)}{(k+1)+1}$$

We observe that,

$$S_{(k+1)} = 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{2}{k(k+1)} + \frac{2}{(k+1)[(k+1)+1]}$$

$$= S_{(k)} + \frac{2}{(k+1)(k+2)}$$

$$= \frac{2k}{k+1} + \frac{2}{(k+1)(k+2)}$$

$$= \frac{2k(k+2)+2}{(k+1)(k+2)}$$

$$= \frac{2k^2+2k+2}{(k+1)(k+2)}$$

$$= \frac{2(k^2+k+1)}{(k+1)(k+2)}$$

$$= \frac{2(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{2(k+1)}{(k+2)}$$

$$= \frac{2(k+1)}{(k+2)}$$

$$= \frac{2(k+1)}{(k+2)}$$

: The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{2}{n(n+1)} = \frac{2n}{n+1}$$
, is true for all $n \in \mathbb{N}$.

4. 1.2.3 + 2.3.4 + 3.4.6 + +
$$n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Solution : Let $s_{(n)}$ be the given statement ;

The n^{th} term of the given series is n(n+1)(n+2)

$$s_{(n)} = 1.2.3 + 2.3.4 + 3.4.6 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

 $s_{(1)} = 1.2.3 = 6 = \frac{1(1+1)(1+2)(1+3)}{4} = 6$, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$s_{(k)} = 1.2.3 + 2.3.4 + 3.4.6 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)} = \frac{(k+1)[(k+1)+1][(k+1)+2][(k+1)+3]}{4}$

We observe that,

$$s_{(k+1)} = 1.2.3 + 2.3.4 + 3.4.6 + \dots + k(k+1)(k+2) + (k+1)[(k+1)+1][k+1)+2]$$

 $= s_{(k)} + (k+1) (k+2) (k+3)$ $= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1) (k+2) (k+3)$ $= \frac{k(k+1)(k+2)(k+3) + 4[(k+1)(k+2)(k+3)]}{4}$ $= \frac{(k+1)(k+2)(k+3) [k+4]}{4}$ $\therefore s_{(k+1)} = \frac{(k+1) [(k+1)+1] [(k+1)+2] [(k+1)+3]}{4}$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

 $1.2.3 + 2.3.4 + 3.4.6 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}, \text{ is true for all } n \in \mathbb{N}.$ 5. $1.3 + 2.3^2 + 3.3^2 + \dots + n.3^2 = \frac{(2n-1)3^{n+1}+3}{4}$

Solution : Let $s_{(n)}$ be the given statement ;

$$s_{(n)} = 1.3 + 2.3^2 + 3.3^2 + \dots + n.3^2 = \frac{(2n-1)3^{n+1}+3}{4}$$

Since $s_{(1)} = 3 = \frac{(2.1-1)3^{1+1}+3}{4} = \frac{12}{4} = 3$, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $s_{(k)} = 1.3 + 2.3^2 + 3.3^2 + \dots + n.3^2 = \frac{(2k-1)3^{k+1}+3}{4}$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $S_{(k+1)} = \frac{(2[k+1]-1)3^{(k+1)+1}+3}{4}$

We observe that,

$$S_{(k+1)} = 1.3 + 2.3^{2} + 3.3^{2} + \dots + n.3^{2} + (k+1)3^{k+1}$$

$$= s_{(k)} + (k+1)3^{k+1}$$

$$= \frac{(2k-1)3^{k+1}+3}{4} + (k+1)3^{k+1}$$

$$= \frac{(2k-1)3^{k+1}+3+4(k+1)3^{k+1}}{4}$$

$$= \frac{3^{k+1}(2k-1+4k+4)+3}{4}$$

$$= \frac{3^{k+1}(6k+3)+3}{4}$$

$$= \frac{3^{k+1}(6k+3)+3}{4}$$

$$= \frac{3^{k+1}3(2k+1)+3}{4}$$

$$= \frac{(2k+1)3\cdot3^{k+1}+3}{4}$$

$$\therefore S_{(k+1)} = \frac{(2[k+1]-1)3^{(k+1)+1}+3}{4}$$

 \therefore The formula is true for n =k+1

: By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

$$1.3 + 2.3^{2} + 3.3^{2} + \dots + n.3^{2} = \frac{(2n-1)3^{n+1}+3}{4}, \text{ is true for all } n \in \mathbb{N}.$$

$$1.2 + 2.3 + 3.4 + \dots + n.(n+1) = \frac{n(n+1)(n+2)}{3}$$

Solution : Let $s_{(n)}$ be the given statement ;

$$s_{(n)} = 1.2 + 2.3 + 3.4 + \dots + n.(n+1) = \frac{n(n+1)(n+2)}{3}$$

Since $s_{(1)} = 2 = \frac{1(1+1)(1+2)}{3} = 2$, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$s_{(K)} = 1.2 + 2.3 + 3.4 + \dots + K.(K+1) = \frac{K(K+1)(K+2)}{3}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$S_{(k+1)} = \frac{(K+1)[(K+1)+1][(K+1)+2]}{3}$$

We observe that,

6.

 $S_{(K+1)} = 1.2 + 2.3 + 3.4 + \dots + K.(K+1) + (K+1)[(K+1)+1]$

$$= s_{(K)} + (K+1)(K+2)$$

$$= \frac{K(K+1)(K+2)}{3} + (K+1)(K+2)$$

$$= \frac{K(K+1)(K+2) + 3[(K+1)(K+2)]}{3}$$

$$= \frac{(K+1)(K+2)[K+3]}{3}$$

$$s_{(k+1)} = \frac{(K+1)[(K+1)+1][(K+1)+2]}{3}$$

 \therefore The formula is true for n =k+1

:.

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

1.2 + 2.3 + 3.4 + + n.(n+1) =
$$\frac{n(n+1)(n+2)}{3}$$
, is true for all $n \in \mathbb{N}$.

7. 1.3 + 3.5 + 5.7 + + (2n-1)(2n+1) = $\frac{n(4n^2+6n-1)}{3}$

Solution : Let $s_{(n)}$ be the given statement ;

$$S_{(n)} = 1.3 + 3.5 + 5.7 + \dots + (2n-1)(2n+1) = \frac{n(4n^2+6n-1)}{3}$$

Since
$$s_{(1)} = 3 = \frac{1(4.1^2 + 61 - 1)}{3} = 3$$
, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k then

 $S_{(k)} = 1.3 + 3.5 + 5.7 + \dots + (2k-1)(2k+1) = \frac{k(4k^2+6k-1)}{3}$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$S_{(k+1)} = \frac{(k+1)[4(k+1)^2+6(k+1)-1]}{3}$$

We observe that,

$$s_{(k)} = 1.3 + 3.5 + 5.7 + \dots + (2k-1)(2k+1) + [2(k+1)-1] [2(k+1)+1]$$
$$= s_{(k)} + (2k+1)(2k+3)$$
$$= \frac{k(4k^2+6k-1)}{3} + (2k+1)(2k+3)$$
$$= \frac{k(4k^2+6k-1)+3(2k+1)(2k+3)}{3}$$
$$= \frac{(4k^3+6k^2-k)+(12k^2+24k+9)}{3}$$

$$= \frac{4k^{3} + 18k^{2} + 23k + 9}{3}$$

$$= \frac{(k+1)(4k^{2} + 14k + 9)}{3}$$

$$= \frac{(k+1)(4k^{2} + 8k + 6k + 4 + 6 - 1)}{3}$$

$$= \frac{(k+1)[(4k^{2} + 8k + 4) + [(6k+6) - 1]]}{3}$$

$$S_{(k+1)} = \frac{(k+1)[(4(k+1)^{2} + 6(k+1) - 1]}{3}$$

: The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

1.3 + 3.5 + 5.7 + + (2n-1)(2n+1) = $\frac{n(4n^2+6n-1)}{3}$, is true for all n ∈ N. 8. 1.2 + 2.2² + 3.2² + + n.2ⁿ = (n-1) 2ⁿ⁺¹ +2

Solution : Let $s_{(n)}$ be the given statement ;

:.

 $s_{(n)} = 1.2 + 2.2^2 + 3.2^2 + \dots + n.2^n = (n-1)2^{n+1} + 2$ Since $s_{(1)} = 2 = (1-1)2^{1+1} + 2 = 2$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $s_{(k)} = 1.2 + 2.2^2 + 3.2^2 + \dots + k.2^k = (k-1)2^{k+1}+2$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)} = [(k+1)-1] 2^{(k+1)+1} + 2$

We observe that,

$$s_{(k+1)} = 1.2 + 2.2^{2} + 3.2^{2} + \dots + k.2^{k} + (k+1).2^{k+1}$$

$$= s_{(k)} + (k+1).2^{k+1}$$

$$= (k-1) 2^{k+1} + 2 + (k+1).2^{k+1}$$

$$= 2^{k+1} [(k-1) + (k+1)] + 2$$

$$= 2^{k+1} (k-1+k+1) + 2$$

$$= 2^{k+1} .2k + 2$$

$$\therefore \quad s_{(k+1)} = [(k+1)-1] 2^{(k+1)+1} + 2$$

\therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$1.2 + 2.2^2 + 3.2^2 + \dots + n.2^n = (n-1)2^{n+1}+2$$
, is true for all $n \in N$.

9.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

Solution : Let $s_{(n)}$ be the given statement ;

$$S_{(n)} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

Since $s_{(1)} = \frac{1}{2} = 1 - \frac{1}{2^1} = \frac{1}{2}$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $S_{(k)} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k}$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)} = 1 - \frac{1}{2^{k+1}}$

We observe that,

$$S_{(k+1)} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}}$$

$$= S_{(k)} + \frac{1}{2^{k+1}}$$

$$= 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}}$$

$$= \frac{2^{k} \cdot 2^{k+1} - 2^{k+1} + 2^k}{2^k \cdot 2^{k+1}}$$

$$= \frac{2^{k} \cdot 2^{k} \cdot 2 - 2^k \cdot 2 + 2^k}{2^k \cdot 2^{k+1}}$$

$$= \frac{2^k \cdot 2 - 2^k \cdot 2 + 2^k}{2^k \cdot 2^{k+1}}$$

$$= \frac{2^k \cdot 2 - 1}{2^{k+1}}$$

$$= \frac{2^{k+1} - 1}{2^{k+1}}$$

$$\therefore S_{(k+1)} = 1 - \frac{1}{2^{k+1}}$$

 \therefore The formula is true for n =k+1

: By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$
, is true for all $n \in \mathbb{N}$

10. $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$

Solution : Let $s_{(n)}$ be the given statement ;

 $S_{(n)} = \frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$ Since $S_{(1)} = \frac{1}{10} = \frac{1}{(6.1+4)} = \frac{1}{10}$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$S_{(k)} = \frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} = \frac{k}{(6k+4)}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$S_{(k+1)} = \frac{k+1}{6(k+1)+4}$$

We observe that,

$$S_{(k+1)} = \frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{[3(k+1)-1][3(k+1)+2]}$$

$$= S_{(k)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{(6k+4)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{K(3K+2)(3K+5) + (6K+4)}{(6K+4)(3k+2)(3k+5)}$$

$$= \frac{K(3K+2)(3K+5) + 2(3K+2)}{(6K+4)(3k+2)(3k+5)}$$

$$= \frac{(3K+2)[k(3K+5) + 2]}{(6K+4)(3k+2)(3k+5)}$$

$$= \frac{k(3K+5) + 2}{(6K+4)(3k+5)}$$

$$= \frac{k^2+5k+2}{(6K+4)(3k+5)}$$

$$= \frac{k^2+5k+2}{(6K+4)(3k+5)}$$

$$= \frac{k^2+3k+2k+2}{18k^2+12k+30k+20}$$

$$= \frac{3k(k+1)+2(k+1)}{6k(3k+2)+10(3k+2)}$$

 $= \frac{(3k+2)(k+1)}{(6k+10)(3k+2)}$

$$= \frac{(k+1)}{(6k+10)}$$

: $s_{(k+1)} = \frac{k+1}{6(k+1)+4}$

: The formula is true for n = k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$. $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$, is true for all $n \in N$. 11. $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$

Solution : Let $s_{(n)}$ be the given statement ;

 $S_{(n)} = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$ Since $S_{(1)} = \frac{1}{6} = \frac{1(1+3)}{4(1+1)(1+3)} = \frac{4}{4.2.3} = \frac{1}{6}$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $S_{(k)} = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)}$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$S_{(k+1)} = \frac{(k+1)[(k+1)+3]}{4[(k+1)+1][(k+1)+2]}$$

We observe that,

$$S_{(k+1)} = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{k(k+1)(k+2)} + \frac{1}{(k+1)\left[(k+1)+1\right]\left[(k+1)+2\right]}$$
$$= S_{(k)} + \frac{1}{(k+1)(k+2)(k+3)}$$
$$= \frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$$
$$= \frac{k(k+3)^2 + 4}{4(k+1)(k+2)(k+3)}$$
$$= \frac{k(k^2 + 6k + 9) + 4}{4(k+1)(k+2)(k+3)}$$
$$= \frac{(k^3 + 6k^2 + 9k) + 4}{4(k+1)(k+2)(k+3)}$$
$$= \frac{k^3 + 6k^2 + 9k + 4}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k^2 + 5k + 4)(k+1)}{4(k+1)(k+2)(k+3)}$$
$$= \frac{(k+1)(k+4)(k+1)}{4(k+1)(k+2)(k+3)}$$
$$= \frac{(k+1)(k+4)}{4(k+2)(k+3)}$$
$$S_{(k+1)} = \frac{(k+1)[(k+1)+3]}{4[(k+1)+1][(k+1)+2]}$$

: The formula is true for n = k+1

:.

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)} \text{ , is true for all } n \in \mathbb{N}.$$
12. $a + ar + ar^3 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{(r-1)}, r \neq 1$

Solution : Let $s_{(n)}$ be the given statement ;

$$S_{(n)} = a + ar + ar^3 + \dots + ar^{n-1} = \frac{a(r^{n-1})}{(r-1)}$$

For n=1, $s_{(1)} = a = \frac{a(r^{1}-1)}{(r-1)} = a$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k. then

$$s_{(k)} = a + ar + ar^3 + \dots + ar^{k-1} = \frac{a(r^k - 1)}{(r-1)}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that $s_{(k+1)} = \frac{a(r^{(k+1)}-1)}{(r-1)}$

We observe that,

:.

 $S_{(k+1)} = a + ar + ar^3 + \dots + ar^{n-1} + ar^{(k+1)-1}$

$$= s_{(k)} + a r^{(k+1)-1}$$

$$= \frac{a (r^{k}-1)}{(r-1)} + a r^{k}$$

$$= \frac{a (r^{k}-1)+r^{k}(r-1)}{(r-1)}$$

$$= \frac{a (r^{k}-1+r^{k+1}-r^{k})}{(r-1)}$$

$$s_{(k+1)} = \frac{a (r^{(k+1)}-1)}{(r-1)}$$

: The formula is true for n = k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

a +a r + a
$$r^3$$
 + +a $r^{n-1} = \frac{a(r^{n}-1)}{(r-1)}$ is true for all $n \in N$.

13.
$$(1+\frac{3}{1})(1+\frac{5}{4})(1+\frac{7}{9})$$
 $(1+\frac{2n+1}{n^2}) = (n+1)^2$

Solution : Let $s_{(n)}$ be the given statement ;

$$s_{(n)} = \left(1 + \frac{3}{1}\right) \left(1 + \frac{5}{4}\right) \left(1 + \frac{7}{9}\right) \dots \left(1 + \frac{2n+1}{n^2}\right) = (n+1)^2$$

$$s_{(1)} = 4 = (1+1)^2 = 4, \text{ For n=1}$$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$s_{(k)} = (1 + \frac{3}{1}) (1 + \frac{5}{4}) (1 + \frac{7}{9}) \dots (1 + \frac{7}{9}) = (k + 1)^2$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)}$ = $[(k+1)+1\,]^2$

We observe that,

$$s_{(k+1)} = \left(1 + \frac{3}{1}\right) \left(1 + \frac{5}{4}\right) \left(1 + \frac{7}{9}\right) \dots \left(1 + \frac{2k+1}{k^2}\right) \left(1 + \frac{2(k+1)+1}{(k+1)^2}\right)$$

$$= s_{(k)} \left(1 + \frac{2k+3}{(k+1)^2}\right)$$

$$= (k+1)^2 \left[\frac{(k+1)^2 + (2k+3)}{(k+1)^2}\right]$$

$$= (k+1)^2 + (2k+3)$$

$$= k^2 + 2k + 1 + 2k + 3$$

$$= k^2 + 4k + 4$$

$$= (k+1)^2$$

$$\therefore s_{(k+1)} = [(k+1)+1]^2$$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

$$(1+\frac{3}{1})(1+\frac{5}{4})(1+\frac{7}{9})$$
($1+\frac{2n+1}{n^2}$) = $(n+1)^2$, is true for all $n \in \mathbb{N}$.

14. $\left[1+\frac{1}{1}\right] \left[1+\frac{1}{2}\right] \left[1+\frac{1}{3}\right] \dots \left[1+\frac{1}{n}\right] = (n+1)$

Solution : Let $s_{(n)}$ be the given statement ;

$$s_{(n)} = [1 + \frac{1}{1}] [1 + \frac{1}{2}] [1 + \frac{1}{3}] \dots [1 + \frac{1}{n}] = (n+1)$$

Since $s_{(1)} = [1 + \frac{1}{1}] = 2 = (1+1) = 2$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$S_{(k)} = [1 + \frac{1}{1}] [1 + \frac{1}{2}] [1 + \frac{1}{3}] \dots [1 + \frac{1}{k}] = (k+1)$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)} = [(k+1) + 1]$

We observe that,

$$s_{(k+1)} = \left[1 + \frac{1}{1}\right] \left[1 + \frac{1}{2}\right] \left[1 + \frac{1}{3}\right] \dots \left[1 + \frac{1}{k}\right] \left[1 + \frac{1}{k+1}\right]$$
$$= s_{(k)} + \left[1 + \frac{1}{k+1}\right]$$
$$= (k+1) + \left[1 + \frac{1}{k+1}\right]$$
$$= (k+1) + \left[\frac{(k+1)+1}{k+1}\right]$$
$$= \frac{\left[(k+1)(k+1)\right] + \left[(k+1)+1\right]}{k+1}$$
$$= \frac{(k+1)\left[(k+1)+1\right]}{k+1}$$
$$\therefore s_{(k+1)} = \left[(k+1)+1\right]$$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$[1+\frac{1}{1}]$$
 $[1+\frac{1}{2}]$ $[1+\frac{1}{3}]$ $[1+\frac{1}{n}] = (n+1)$, is true for all $n \in \mathbb{N}$.
15. $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$

$$s_{(n)} = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

Since
$$s_{(1)} = 1 = \frac{1(2.1-1)(2.1+1)}{3} = 1$$
, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then $s_{(k)} = 1^2 + 3^2 + 5^2 + \dots + (2k - 1)^2 = \frac{k(2k-1)(2k+1)}{3}$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that,
$$s_{(k+1)} = \frac{(k+1)[2(k+1)-1][2(k+1)+1]}{3}$$

We observe that,

$$\begin{aligned} s_{(k+1)} &= 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 + [2(k+1)-1]^2 \\ &= s_{(k)} + (2k+1)^2 \\ &= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2 \\ &= \frac{k(2k-1)(2k+1) + 3(2k+1)^2}{3} \\ &= \frac{(2k+1) \left[k(2k-1) + 3(2k+1) \right]}{3} \\ &= \frac{(2k+1) \left[(2k^2-k) + 6k+3 \right]}{3} \\ &= \frac{(2k+1) \left(2k^2-k + 6k+3 \right)}{3} \\ &= \frac{(2k+1) \left(2k^2-k + 6k+3 \right)}{3} \\ &= \frac{(2k+1) \left(2k^2+5k+3 \right)}{3} \\ &= \frac{(2k+1) \left(2k^2+5k+3 \right)}{3} \\ &= \frac{(2k+1) \left(2k+1 \right) (2k+3)}{3} \\ &= \frac{(k+1) (2k+1) (2k+3)}{3} \end{aligned}$$

$$S_{(k+1)} = \frac{(k+1) [2(k+1)-1] [2(k+1)+1]}{3}$$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$. $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$, is true for all $n \in N$.

16. $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$

$$S_{(n)} = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

Since $S_{(1)} = \frac{1}{4} = \frac{1}{(3.1+1)} = \frac{1}{4}$, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$S_{(k)} = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{(3k+1)}$$

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $s_{(k+1)} = \frac{k+1}{3(k+1)+1}$

We observe that,

$$S_{(k+1)} = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} + \frac{1}{[3(k+1)-2][3k+1)+1]}$$

$$= S_{(k)} + \frac{1}{(3k+1)(3k+4)}$$

$$= \frac{k}{(3k+1)} + \frac{1}{(3k+1)(3k+4)}$$

$$= \frac{k(3k+4)+1}{(3k+1)(3k+4)}$$

$$= \frac{3k^2+4k+1}{(3k+1)(3k+4)}$$

$$= \frac{(k+1)(3k+1)}{(3k+1)(3k+4)}$$

$$= \frac{k+1}{(3k+4)}$$

$$\therefore S_{(k+1)} = \frac{k+1}{3(k+1)+1}$$

$$\therefore \text{ The formula is true for n = k+1}$$

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)} , \text{ is true for all } n \in \mathbb{N}$$

17. $\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$

$$s_{(n)} = \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

Since $s_{(1)} = \frac{1}{15} = \frac{1}{3(2.1+3)} = \frac{1}{15}$, for n=1

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$S_{(k)} = \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)} = \frac{k}{3(2k+3)}$$

We show that the statement $s_{(n)}$ is true for ${\sf n=k+1}$

We show that,
$$s_{(k+1)} = \frac{k+1}{3[2(k+1)+3]}$$

 $s_{(k)} = \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)} + \frac{1}{[2(k+1)+1][2(k+1)+3]}$
 $= s_{(k)} + \frac{1}{(2k+3)(2k+5)}$
 $= \frac{k}{3(2k+3)} + \frac{1}{(2k+3)(2k+5)}$
 $= \frac{k(2k+5)+3}{3(2k+3)(2k+5)}$
 $= \frac{2k^2+5k+3}{3(2k+3)(2k+5)}$
 $= \frac{(k+1)(2k+3)}{3(2k+3)(2k+5)}$
 $= \frac{(k+1)}{3(2k+5)}$
 $= \frac{(k+1)}{3(2k+5)}$
 $\therefore s_{(k+1)} = \frac{k+1}{3[2(k+1)+3]}$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}, \text{ is true for all } n \in \mathbb{N}.$$

18. $1 + 2 + 3 + \dots + n < \frac{1}{8} (2n+1)^2.$

Solution : Let $s_{(n)}$ be the given statement ;

$$1 + 2 + 3 + \dots + n < \frac{1}{8} (2n + 1)^2$$
$$\frac{n(n+1)}{2} < \frac{1}{8} (2n + 1)^2$$
If n=1,
$$\frac{1(1+1)}{2} < \frac{1}{8} (2.1 + 1)^2$$
$$1 < \frac{9}{8}$$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

$$1 + 2 + 3 + \dots + k < \frac{1}{8} (2k + 1)^2$$

We show that the statement $s_{(n)}$ is true for n = k+1

$$1 + 2 + 3 + \dots + k + (k+1) < \frac{1}{8} (2k + 1)^{2} + (k+1)$$

$$\frac{1}{8} (2k + 1)^{2} + (k+1)$$

$$= \frac{1}{8} [(2k + 1)^{2} + 8 (k+1)]$$

$$= \frac{1}{8} [(4k^{2} + 4k + 1) + 8k + 8]$$

$$= \frac{1}{8} (4k^{2} + 12k + 9)$$

$$= \frac{1}{8} (2k + 3)^{2}$$

$$= \frac{1}{8} [2(k + 1) + 1]^{2}$$

$$1 + 2 + 3 + \dots + k + (k+1) < \frac{1}{8} (2k + 1)^{2} + (k+1)$$

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

19. n(n+1)(n+5) is a multiple of 3.

Solution : Let $s_{(n)}$ be the given statement ;

n (n+1) (n+5) is a multiple of 3

if n=1, 1(1+1)(1+5) = 9 is a multiple of 3

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

k(k+1)(k+5) is a multiple of 3

k(k+1)(k+5) = 3t (t is a natural number)(1)

We show that the statement $s_{(n)}$ is true for n = k+1

(k+1) [(k+1) +1] [(k+1) +5] is a multiple of 3
(k+1) (k+2) [(k+5) + 1]
= (k+1) [k+2] (k+5) + (k+1) (k+2)

$$= k (k+1) (k+5) + 2(k+1) (k+5) + (k+1) (k+2)$$

$$= 3t + 2(k+1) (k+5) + (k+1) (k+2) \text{ from (1)}$$

$$= 3t + (k+1) [2 (k+5) + (k+2)]$$

$$= 3t + (k+1) [2k+10 + k+2]$$

$$= 3t + (k+1) (3k+12)$$

$$= 3t + (k+1) 3(k+4)$$

$$= 3 [t + (k+1) (k+4)] \qquad \{ [(t+(k+1) (k+4)] \text{ is some natural number} \}$$

: (k+1)[(k+1)+1][(k+1)+5] is a multiple of 3

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

20. $10^{2n-1} + 1$ is divisible by 11.

Solution : Let $s_{(n)}$ be the given statement ;

 10^{2n-1} + 1 is divisible by 11

If n=1 , $10^{2.1-1}$ + 1 = 11 is divisible by 11

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k , then

 $10^{2k-1} + 1$ is divisible by 11 $10^{2k-1} + 1 = 11t$ (t is a natural number) $10^{2k-1} = 11t - 1$ (1)

We show that the statement $s_{(n)}$ is true for n = k+1

$$10^{2(k+1)-1} + 1$$
 is divisible by 11
 $10^{2k-1} = 11t - 1$ from (1)
 $10^{2k-1} \cdot 10^2 = (11t - 1) 10^2$
 $10^{2k-1+2} = 10^2 \cdot 11t - 10^2$
 $10^{2(k+1)-1} = 10^2 \cdot 11t - 10^2$

Add 1 on both sides, we get

$$10^{2(k+1)-1} + 1 = 10^2$$
. 11t - 10² + 1

$$10^{2(k+1)-1} + 1 = 10^2$$
. 11t - (100 - 1)
 $10^{2(k+1)-1} + 1 = 100$. 11t - 99
 $10^{2(k+1)-1} + 1 = 11 (100t - 9)$ [(100t-9) is some natural number]
 $10^{2n-1} + 1$ is divisible by 11
∴ The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

21. $x^{2n} - y^{2n}$ is divisible by (x + y).

Solution : Let $s_{(n)}$ be the given statement ;

 $x^{2n} - y^{2n}$ is divisible by (x + y)

If n=1, $x^{2.1} - y^{2.1}$ is divisible by (x + y)

$$x^2 - y^2 = (x+y)(x-y)$$
 is divisible by $(x+y)$

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $x^{2k} - y^{2k}$ is divisible by (x + y) $x^{2n} - y^{2n} = (x + y)p$ (p is quotient)

We show that the statement $s_{(n)}$ is true for n = k+1

$$x^{2(k+1)} - y^{2(k+1)}$$
 is divisible by (x + y)

We know that, $x^{2k} - y^{2k} = (x+y)p$ $x^{2k} = (x+y)p - y^{2k}$ $x^{2k} \cdot x = [(x+y)p - y^{2k}]x$ $x^{2k+1} = (x+y)px - y^{2k}x$ $x^{2k+1} - y^{2k+1} = (x+y)px - y^{2k} \cdot x - y^{2k+1}$ $x^{2k+1} - y^{2k+1} = (x+y)px - y^{2k}(x+y)$ $x^{2k+1} - y^{2k+1} = (x+y)[px - y^{2k}]$ $[px - y^{2k}]$ is a factor of (x+y)] $\therefore x^{2(k+1)} - y^{2(k+1)}$ is divisible by (x+y)

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

22. $3^{2n+2} - 8n - 9$ is divisible by 8.

Solution : Let $s_{(n)}$ be the given statement ;

 $3^{2n+2} - 8n - 9$ is divisible by 8

If n=1, $3^{2.1+2} - 8.1 - 9 = 64$ is divisible by 8

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k, then

 $3^{2k+2} - 8k - 9$ is divisible by 8

$$3^{2k+2} - 8k - 9 = 8t$$
 (t is a natural number)

We show that the statement $s_{(n)}$ is true for n = k+1

We show that, $3^{2(k+1)+2} - 8(k+1) - 9$ is divisible by 8 We have that, $3^{2k+2} - 8k - 9 = 8t$ $3^{2k+2} = 8t + 8k + 9$ $3^{2k+2} \cdot 3^2 = (8t + 8k + 9) 3^2$ $3^{2k+2} \cdot 3^2 - 8(k+1) - 9 = (72t + 72k + 81) - 8(k+1) - 9$ = 72t + 72k + 81 - 8k - 8 - 9 = 72t + 64k + 64 = 8(9t + 8k + 8)[(9t + 8k + 8) is some natural number]

: $3^{2(k+1)+2} - 8(k+1) - 9$ is divisible by 8

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all $n \in N$.

23. $41^n - 14^n$ is a multiple of 27.

Solution : Let $s_{(n)}$ be the given statement ;

 $41^n - 14^n$ is a multiple of 27

Since, $41^1 - 14^1 = 27$ is a multiple of 27

The statement $s_{(n)}$ is true for n = 1

Assume that the statement $s_{(n)}$ is true for n = k , then

$$41^{k} - 14^{k}$$
 is a multiple of 27
 $41^{k} - 14^{k} = 27t$, $(t \in N)$
 $41^{k} = 27t + 14^{k}$

We show that the statement $s_{\left(n\right)}$ is true for n = k+1

We show that $41^{(k+1)} - 14^{(k+1)}$ is a multiple of 27

We have
$$41^k = 27t + 14^k$$

 $41^k \cdot 41 = (27t + 14^k) 41$
 $41^{k+1} = (27t + 14^k) 41$
 $41^{k+1} - 14^k \cdot 14 = 41 \cdot 27t + 14^k \cdot 41 - 14^k \cdot 14$
 $41^{k+1} - 14^{k+1} = 41 \cdot 27t + 14^k (41 - 14)$
 $41^{k+1} - 14^{k+1} = 41 \cdot 27t + 14^k \cdot 27$
 $41^{k+1} - 14^{k+1} = 27(41t + 14^k)$

[$(41t + 14^k)$ is some natural number]

:
$$41^{(k+1)} - 14^{(k+1)}$$
 is a multiple of 27

 \therefore The formula is true for n =k+1

∴ By the principle of mathematical induction $s_{(n)}$ is true for all n ∈ N.