A.P. Intermediate Board Mathematics IA Model Paper

(Extracted from https://bieap.apcfss.in)

Mathematics Paper - I(A)

Time : 3 Hours

Max. Marks : 75

<u>SECTION - A</u>

I. Very Short Answer Type Questions :

10 × 2 = 20

- (i) Answer ALL questions.
- (ii) Each question carries **TWO** marks.
- **1.** If A = (−2, −1, 0, 1, 2) and f : A → B is a surjection defined by $f(x) = x^2 + x + 1$ then find B.
- **2.** Find the domain of the real valued function $f(x) = \log (x^2 4x + 3)$.
- **3.** Define trace of matrix. Find the trace of A if $A = \begin{bmatrix} 1 & 2 & -\frac{1}{2} \\ 0 & -1 & 2 \\ -\frac{1}{2} & 2 & 1 \end{bmatrix}$.
- **4**. Find the Rank of $\begin{bmatrix} -1 & -2 & -3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$.
- **5.** If the vectors $-3\overline{i} + 4\overline{j} + \lambda \overline{k}$ and $\mu \overline{i} + 8\overline{j} + 6\overline{k}$ are collinear vectors, then find λ and μ .
- **6.** Find the vector equation of the line joining the points $2\overline{i} + \overline{j} + 3\overline{k}$ and $-4\overline{i} + 3\overline{j} - \overline{k}$.
- **7.** If $\bar{a} = 2\bar{i} 3\bar{j} + 5\bar{k}$, $\bar{b} = -\bar{i} + 4\bar{j} + 2\bar{k}$ then find $\bar{a} \times \bar{b}$ and unit vector perpendicular to both \bar{a} and \bar{b} .
- **8.** Find the period of the function $tan (x + 4x + 9x + + n^2x)$ where *n* is any positive integer.

9. Find the maximum and minimum values of 3 sin $x - 4 \cos x$.

10. Show that $tanh^{-1}(\frac{1}{2}) = \frac{1}{2}\log_e 3$.

<u>SECTION - B</u>

II. Short Answer Type Questions :

5 × 4 = 20

(i) Answer **ANY FIVE** questions.

(ii) Each question carries FOUR marks.

11. If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then show that
 $(aI + bE)^3 = a^3I + 3a^2bE$,
where I is unit matrix of order 2.

- **12.** Let ABCDEF be a regular hexagon with centre 'O', show that $\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3 \overline{AD} = 6 \overline{AO}$.
- **13.** $\bar{a} = 2\bar{i} + \bar{j} \bar{k}$, $\bar{b} = -\bar{i} + 2\bar{j} 4\bar{k}$, and $\bar{c} = \bar{i} + \bar{j} + \bar{k}$, then find $(\bar{a} \times \bar{b}) \cdot (\bar{b} \times \bar{c})$.

14. Find the value of $\sin^2 \frac{\pi}{10} + \sin^2 \frac{4\pi}{10} + \sin^2 \frac{6\pi}{10} + \sin^2 \frac{9\pi}{10}$. **15.** Prove that : $\frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = 4$. **16.** If $\sin x + \sin y = \frac{1}{4}$ and $\cos x + \cos y = \frac{1}{3}$ then show that (i) $\tan \left(\frac{x+y}{2}\right) = \frac{3}{4}$ (ii) $\cot (x + y) = \frac{7}{24}$.

17. In $\triangle ABC$, prove that $\cot A + \cot B + \cot C = \frac{a^2+b^2+c^2}{4\Delta}$.

<u>SECTION - C</u>

III. Long Answer Type Questions :

5 × 7 = 35

- (i) Answer **ANY FIVE** questions.
- (ii) Each question carries SEVEN marks.

18. If $f = \{(4, 5), (5, 6), (6, -4\})$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find

(i)
$$f + g$$
 (ii) $f - g$ (iii) $2f + 4g$ (iv) $f + 4$
(v) fg (vi) f/g (vii) $|f|$.
19. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then show that $A^{-1} = A^3$.

20. Solve the following simultaneous linear equations by using Cramer's rule

x + y + z = 1, 2x + 2y + 3z = 6, x + 4y + 9z = 3.

- **21.** Show that the line joining the pair of points $6\overline{a} 4\overline{b} + 4\overline{c}$, $-4\overline{c}$ and the line joining the pair of points $-\overline{a} - 2\overline{b} - 3\overline{c}$, $\overline{a} + 2\overline{b} - 5\overline{c}$ intersect at the point $-4\overline{c}$ when \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors.
- **22.** If $\bar{a} = 2\bar{i} + 3\bar{j} + 4\bar{k}$, $\bar{b} = \bar{i} + \bar{j} \bar{k}$ and $\bar{c} = \bar{i} \bar{j} + \bar{k}$, then compute $\bar{a} \times (\bar{b} \times \bar{c})$ and verify that it is perpendicular to \bar{a} .

23. If
$$A + B + C = \pi$$
 then prove that
 $\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2(1 + \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}).$
24. If $\triangle ABC$ if $a = 13$, $b = 14$, $c = 15$, show that $R = \frac{65}{8}$, $r = 4$, $r_1 = \frac{21}{2}$
 $r_2 = 12$ and $r_3 = 14$.