A.P. Intermediate Board Mathematics IIA Model Paper

(Extracted from https://bieap.apcfss.in)

Mathematics Paper - II(A)

Time : 3 Hours

Max. Marks : 75

SECTION A

I. Very Short Answer Type Questions :

10 × 2 = 20

- (i) Answer ALL questions.
- (ii) Each question carries **TWO** marks.
- **1.** Find the multiplicative inverse of 7 + 24i.
- **2.** If $(\sqrt{3} + i)^{100} = 2^{99}(a + ib)$, show that $a^2 + b^2 = 4$.
- 3. Find the cube roots of 8.
- **4.** Find the quadratic equation whose roots are $-3 \pm 5i$.
- **5.** If 1, 1, α are the roots of $x^3 6x^2 + 9x 4 = 0$, then find α .
- **6.** If $(n + 1) P_5 : nP_6 = 2 : 7$, find 'n'.
- **7.** Find the number of permutations that can be made by using all the digits of the word MATHEMATICS.
- 8. Find the number of diagonals of a polygon with 12 sides.
- **9.** Find the variance for the discrete data given below : 6, 7, 10, 12, 13, 4, 8, 12
- **10**. A Poisson variable satisfies P(x = 1) = P(x = 2). Find P(x = 5).

SECTION B

II. Short Answer Type Questions :

5 × 4 = 20

- (i) Answer **ANY FIVE** questions.
- (ii) Each question carries **FOUR** marks.

- **11.** Show that the four points in the Argand plane represented by the complex numbers 2 + i, 4 + 3i, 2 + 5i, 3i are the vertices of a square.
- **12.** Prove that $\frac{1}{3x+1} + \frac{1}{x+1} \frac{1}{(3x+1)(x+1)}$ does not lie between 1 and 4, *if x is real.*
- **13.** If the 6 letters of the word EAMCET are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the rank of the word EAMCET.
- **14.** Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there will be atleast 5 bowlers in the team.
- **15.** Resolve : $\frac{x^2-x+1}{(x+1)(x-1)^2}$ into partial fractions.
- **16.** Find the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards.
- 17. Suppose A and B are independent events with P(A) = 0.6,P(B) = 0.7. Then compute
 - (i) $P(A \cap B)$ ii). $P(A \cup B)$ iii). P(B/A) iv). $P(A^{C} \cap B^{C})$.

<u>SECTION C</u>

III. Long Answer Type Questions :

5 × 7 = 35

- (i) Answer ANY FIVE questions.
- (ii) Each question carries **SEVEN** marks.
- 18. If 'n' is an integer then show that :

$$(1+i)^{n} + (1-i)^{n} = 2^{n+1} \cos \frac{n\pi}{2}.$$
19. Show that one value of $\left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right]^{\frac{8}{3}}$ is $-1.$

20. Solve $x^4 + 4x^3 - 2x^2 - 12x + 9 = 0$, given that it has two pairs of equal roots.

- **21.** Solve the equation $x^4 + 2x^3 5x^2 + 6x + 2 = 0$, given that 1 + i is one of its roots.
- **22.** Find the mean deviation from the mean for the following data, using the step deviation method :

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of Students	6	5	8	15	7	6	3

23. State and prove Addition theorem on probability.

24. A random variable x has the following probability distribution :

<i>X</i> = <i>x</i>	0	1	2	3	4	5	6	7
P(X = x)	0	k	2k	2k	3k	<i>k</i> ²	2k ²	$7k^2 + k$

Find (i) k (ii) The mean and (iii) P(0 < X < 5).