T.S. Intermediate Board Mathematics IA Model Paper

(Extracted from tsbie.cgg.gov.in)

Mathematics Paper - I(A)

Time : 3 Hours

Max. Marks : 75

 $10 \times 2 = 20$

<u>SECTION A</u>

- I. Very Short Answer Type Questions :
 - (i) Answer ALL questions.
 - (ii) Each question carries **TWO** marks.
- 1. If $f: R \rightarrow R$ is defined by $f(x) = \frac{1-x^2}{1+x^2}$, then show that : $f(\tan \vartheta) = \cos 2\vartheta$.
- 2. Find the domain of the real valued function :

$$f(x) = \frac{1}{(x^2 - 1)(x + 3)}.$$

3. If

x - 1	2	5-y		[1	2	3]
0	<i>z</i> – 1	7	=	0	4	7,
L 1	0	a-5		1	0	0

then find the values of x, y, z and a.

- 4. Define Rank of a matrix.
- 5. If the vectors $-3\overline{i} + 4\overline{j} + \lambda \overline{k}$ and $\mu \overline{i} + 8\overline{j} + 6\overline{k}$ are collinear vectors, then find λ and μ .
- 6. Find the vector equation of the plane passing through the points (0, 0, 0), (0, 5, 0) and (2, 0, 1).

- 7. Find the angle between the planes \overline{r} . $(2\overline{t} \overline{j} + 2\overline{k}) = 3$ and \overline{r} . $(3\overline{t} + 6\overline{j} + \overline{k}) = 4$.
- 8. Find the cosine function whose period is 7.
- 9. What is the value of tan 20°+ tan 40°+ $\sqrt{3}$ tan 20° tan 40°?
- 10. For any $x \in R$, prove that $\cosh^4 x \sinh^4 x = \cosh(2x)$.

SECTION B

II. Short Answer Type Questions :

5 × 4 = 20

(i) Answer **ANY FIVE** questions.

(ii) Each question carries FOUR marks.

11. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then find A^4 .

12. If the points whose position vectors are $3\overline{i} - 2\overline{j} - \overline{k}$, $2\overline{i} + 3\overline{j} - 4\overline{k}$,

 $-\bar{t} + \bar{j} + 2\bar{k}$ and $4\bar{t} + 5\bar{j} + \lambda\bar{k}$ are coplanar, then show that :

$$\lambda = \frac{-146}{17}.$$

13. If $|\bar{a}| = 13$, $|\bar{b}| = 5$ and $\bar{a} \cdot \bar{b} = 60$, then find $|\bar{a} \times \bar{b}|$.

14. Prove that :

$$\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\cos\frac{4\pi}{7}\cos\frac{8\pi}{7}=\frac{1}{8}.$$

15. Solve the equation :

$$\sqrt{3}$$
 sin ϑ – cos ϑ = $\sqrt{2}$.

16. Prove that :

$$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} = \frac{\pi}{2}.$$

17. In \triangle ABC, show that :

$$b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2} = s.$$

SECTION C

III. Long Answer Type Questions :

5 × 7 = 35

- (i) Answer ANY FIVE questions.
- (ii) Each question carries **SEVEN** marks.

18. If $f : A \rightarrow B$, $g : B \rightarrow C$ be bijections, then show that :

$$(gof)^{-1} = f^{-1}og^{-1}.$$

19. Using mathematical induction, prove the statement :

$$a + ar + ar^2 + \dots$$
 upto $n \text{ terms} = \frac{a(r^n - 1)}{(r-1)}, r \neq 1.$

20. If

$$\begin{bmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{bmatrix} = 0 \text{ and } \begin{bmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{bmatrix} \neq 0,$$

then show that :

$$abc = -1.$$

21. Solve the system of equations

x + y + z = 1, 2x + 2y + 3z = 6, x + 4y + 9z = 3

by using Cramer's rule.

- 22. Find the volume of the tetrahedron whose vertices are (1, 2, 1),
 (3, 2, 5), (2, −1, 0) and (−1, 0, 1).
- 23. If A, B, C are angles in a triangle, then prove that :

$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}.$$

24. If $r : R : r_1 = 2 : 5 : 12$, then prove that the triangle is right angled at A.