T.S. Intermediate Board Mathematics IB Model Paper

(Extracted from tsbie.cgg.gov.in)
Mathematics Paper - I(B)
Time : 3 Hours

SECTION A

I. Very Short Answer Type Questions :
(i) Attempt ALL questions.
(ii) Each question carries TWO marks.

1. Find the value of x, if the slope of the line passing through $(2,5)$ and $(x, 3)$ is 2.
2. Find the value of p, if the straight lines $x+p=0, y+2=0$ and $3 x+2 y+5=0$ are concurrent.
3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron, find the fourth vertex.
4. Find the equation of the plane passing through $(1,1,1)$ and parallel to the plane $x+2 y+3 z-7=0$.
5. Compute :

$$
\lim _{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}
$$

6. Compute :

$$
\lim _{x \rightarrow 0} \frac{e^{3+x}-e^{3}}{x}
$$

7. If $y=e^{a \sin ^{-1} x}$, then prove that :

$$
\frac{d y}{d x}=\frac{a y}{\sqrt{1-x^{2}}}
$$

8. If $y=\log (\cosh 2 x)$, find :

$$
\frac{d y}{d x} .
$$

9. If the increase in the side of a square is 4%, then find the approximate percentage of increase in the area of the square.
10. Verify Rolle's theorem for the function :

$$
y=f(x)=x^{2}-1 \text { on }[-1,1] .
$$

SECTION B

II. Short Answer Type Questions :
(i) Answer ANY FIVE questions.
(ii) Each question carries FOUR marks.
11. Find the equation of the locus of P, if :

$$
A=(2,3), B=(2,-3) \text { and } P A+P B=8 \text {. }
$$

12. When the origin is shifted to the point $(2,3)$, the transformed equation of a curve is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. Find the original equation of the curve.
13. Find the equation of the line perpendicular to the line $3 x+4 y+6=0$ and making an intercept -4 on the X-axis.
14. If f, given by $f(x)=\left\{\begin{array}{cl}k^{2} x-k & \text { if } x \geq 1 \\ 2 & \text { if } x<1\end{array}\right.$ is a continuous function on R, then find the value of k.
15. Find the derivative of the function $f(x)=$ tan $2 x$ from the first principle.
16. Find the equation of the tangent and the normal to the curve $y^{4}=a x^{3} a t(a, a)$.
17. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?

SECTION C

III. Long Answer Type Questions :
(i) Answer ANY FIVE questions.
(ii) Each question carries SEVEN marks.
18. Find the circumcentre of the triangle whose vertices are given by $(1,3),(0,-2)$ and $(-3,1)$.
19. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.
20. Show that the product of the perpendicular distances from a point (α, β) to the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is :

$$
\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}} .
$$

21. Find the angle between the lines whose direction cosines are given by the equation $3 I+m+5 n=0$ and $6 m n-2 n I+5 I m=0$.
22. If $f(x)=\sin ^{-1} \sqrt{\frac{x-\beta}{\alpha-\beta}}$ and $g(x)=\tan ^{-1} \sqrt{\frac{x-\beta}{\alpha-x}}$, then prove that :

$$
f^{\prime}(x)=g^{\prime}(x) \quad(\beta<x<\alpha) .
$$

23. Find the lengths of subtangent, subnormal at a point t on the curve $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$.
24. Find two positive numbers whose sum is 15 so that the sum of their squares is minimum.
