T.S. Intermediate Board Mathematics IIB Model Paper

Mathematics Paper - II(B)

SECTION A

I. Very Short Answer Type Questions :
(i) Attempt ALL questions.
(ii) Each question carries TWO marks.

1. Find the centre and radius of the circle :

$$
x^{2}+y^{2}-4 x-8 y-41=0
$$

2. If the length of the tangent from $(5,4)$ to the circle

$$
x^{2}+y^{2}+2 k y=0
$$

is 1 , then find k.
3. Find the equation of the common chord of the circles :

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-4 y+3=0 \text { and } \\
& x^{2}+y^{2}-5 x-6 y+4=0 .
\end{aligned}
$$

4. Find the equation of the tangent to the parabola $y^{2}=6 x$ at the positive end of the latus rectum.
5. If the angle between the asymptotes of the hyperbola is 30°, then find its eccentricity.
6. Evaluate the integral :

$$
\int \frac{\sin ^{2} x}{1+\cos 2 x} d x
$$

on $I \subset R \backslash\{(2 n \pm 1) \pi: n \in Z\}$.
7. Evaluate the integral :

$$
\int \frac{2 x+1}{x^{2}+x+1} d x, x \in R
$$

8. Evaluate the definite integral :

$$
\int_{2}^{3} \frac{2 x}{1+x^{2}} d x
$$

9. Find the area of the region enclosed by

$$
y=x^{3}+3, y=0, x=-1, x=2
$$

10. Form the differential equation corresponding to :

$$
y=A \cos 3 x+B \sin 3 x
$$

Where A and B are parameters.

SECTION B

II. Short Answer Type Questions :
(i) Answer ANY FIVE questions.
(ii) Each question carries FOUR marks.
11. Find the length of the chord intercepted by the circle :

$$
x^{2}+y^{2}-x+3 y-22=0
$$

on the line $y=x-3$.
12. Show that the angle between the circles

$$
x^{2}+y^{2}=a^{2}, x^{2}+y^{2}=a x+a y \text { is } \frac{3 \pi}{4} .
$$

13. Find the length of latus rectum, eccentricity, foci and the equation of directrices of the ellipse :

$$
9 x^{2}+16 y^{2}=144
$$

14. Find the equation of the tangent and normal to the ellipse $x^{2}+8 y^{2}=33$ at $(-1,2)$.
15. Find the equations of the tangents to the hyperbola : $3 x^{2}-4 y^{2}=12$ which are :
i). Parallel and
ii). Perpendicular to the line $y=x-7$.
16. Evaluate :

$$
\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x .
$$

17. Solve the differential equation :

$$
\left(x y^{2}+x\right) d x+\left(y x^{2}+y\right) d y=0
$$

SECTION C

III. Long Answer Type Questions :
(i) Answer ANY FIVE questions.
(ii) Each question carries SEVEN marks.
18. Find the equation of a circle which passes through $(2,-3)$ and $(-4,5)$ and having the centre on $4 x+3 y+1=0$.
19. Show that :

$$
\begin{aligned}
& x^{2}+y^{2}-6 x-9 y+13=0 \\
& x^{2}+y^{2}-2 x-16 y=0
\end{aligned}
$$

touch each other. Find the point of contact and the equation of common tangent at their point of contact.
20. Derive the equation of a parabola in standard form.
21. Evaluate :

$$
\int \frac{d x}{(1+x) \sqrt{3+2 x-x^{2}}} \text { on }(-1,3) \text {. }
$$

22. Obtain the reduction for

$$
\int \sin ^{n} x d x
$$

for an integer $n \geq 2$ and deduce the value of :

$$
\int \sin ^{4} x d x
$$

23. Evaluate :

$$
\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x
$$

24. Solve the differential equation :

$$
\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y .
$$

